论文标题
部分可观测时空混沌系统的无模型预测
An automated approach for consecutive tuning of quantum dot arrays
论文作者
论文摘要
最近的进展表明,参数的数量急剧增加已成为调整多量子点设备的主要问题。量子点和栅极电极之间的复杂相互作用导致手动调整过程不再有效。幸运的是,机器学习技术可以自动化并加快简单量子点系统的调整。在这封信中,我们将技术扩展到调整多点设备。我们提出了一种自动化方法,该方法将机器学习,虚拟门和一种局部到全球方法结合在一起,以通过将量子点阵列分为子系统来实现量子点阵列的连续调整。在优化电压配置并建立虚拟门以独立控制每个子系统之后,可以通过适当的InterDot隧道耦合强度有效地将量子点阵列有效地调到少数电子式。我们的实验结果表明,这种方法可以连续调整量子点阵列,而无需人工干预,并在大规模量子点设备中具有广泛的应用前景。
Recent progress has shown that the dramatically increased number of parameters has become a major issue in tuning of multi-quantum dot devices. The complicated interactions between quantum dots and gate electrodes cause the manual tuning process to no longer be efficient. Fortunately, machine learning techniques can automate and speed up the tuning of simple quantum dot systems. In this letter, we extend the techniques to tune multi-dot devices. We propose an automated approach that combines machine learning, virtual gates and a local-to-global method to realize the consecutive tuning of quantum dot arrays by dividing them into subsystems. After optimizing voltage configurations and establishing virtual gates to control each subsystem independently, a quantum dot array can be efficiently tuned to the few-electron regime with appropriate interdot tunnel coupling strength. Our experimental results show that this approach can consecutively tune quantum dot arrays into an appropriate voltage range without human intervention and possesses broad application prospects in large-scale quantum dot devices.