论文标题

开放理想的基因座,并申请了birational图

Open loci of ideals with applications to Birational maps

论文作者

Hassanzadeh, S. H., Mostafazadehfard, M.

论文摘要

在这项工作中,我们表明,主要等级的理想基因座,至少两个等级的理想和最大分析酱的理想是参数空间中的Zariski开放式集合。作为一个应用程序,我们表明{\ it清晰的多项式学位} $ d $在任意投影品种$ x $上,由$ \ bir(x)_ {d} $表示。这扩展了Blanc和Furter的先前结果。

In this work we show that the loci of ideals in principal class, ideals of grade at least two, and ideals of maximal analytic spread are Zariski open sets in the parameter space. As an application, we show that the set of birational maps of {\it clear polynomial degree} $d$ over an arbitrary projective variety $X$, denoted by $\Bir(X)_{d}$, is a constructible set. This extends a previous result by Blanc and Furter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源