论文标题

$ sl(2,f)$ for Local Fields中的参与式限制的限制

Chabauty limits of groups of involutions in $SL(2,F)$ for local fields

论文作者

Ciobotaru, Corina, Leitner, Arielle

论文摘要

我们对$ sl(2,f)$的各种(摘要)差异固定的组的chabauty限制进行了分类,其中$ f $是$ \ mathbb {q} _p $的有限字段扩展,带有$ p \ neq 2 $。为此,我们首先将$ sl(2,f)$上的抽象反应与$ f $ a二次扩展为$ \ mathbb {q} _p $,并证明$ p $ p $ - adic极性分解相对于$ p $ - adic $ sl_2 $的各种子组。然后,我们将chabauty限制分类为:$ sl(2,f)\ subset sl(2,e)$,其中$ e $是$ f $的二次扩展为$ f $,$ sl(2,\ mathbb {r})\ subset sl sl(2,2,\ mathbb {c}) $ f $ -involution $θ$超过$ sl(2,f)$。

We classify Chabauty limits of groups fixed by various (abstract) involutions over $SL(2,F)$, where $F$ is a finite field-extension of $\mathbb{Q}_p$, with $p\neq 2$. To do so, we first classify abstract involutions over $SL(2,F)$ with $F$ a quadratic extension of $\mathbb{Q}_p$, and prove $p$-adic polar decompositions with respect to various subgroups of $p$-adic $SL_2$. Then we classify Chabauty limits of: $SL(2, F) \subset SL(2,E)$ where $E$ is a quadratic extension of $F$, of $SL(2,\mathbb{R}) \subset SL(2,\mathbb{C})$, and of $H_θ\subset SL(2,F)$, where $H_θ$ is the fixed point group of an $F$-involution $θ$ over $SL(2,F)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源