论文标题

CAS4DL:通过深度学习进行功能近似的ChristOffel自适应抽样

CAS4DL: Christoffel Adaptive Sampling for function approximation via Deep Learning

论文作者

Adcock, Ben, Cardenas, Juan M., Dexter, Nick

论文摘要

从样本点近似平稳的多元功能的问题在科学计算中的许多应用中都出现,例如,用于科学和工程的计算不确定性量化(UQ)中。在这些应用中,目标函数可以代表参数化偏微分方程(PDE)的所需数量的兴趣。由于解决此类问题的成本很高,该问题是通过求解PDE计算的,因此样本效率是有关这些应用的关键。最近,人们越来越关注深度神经网络(DNN)和深度学习(DL)从数据中学习此类功能。在这项工作中,我们提出了一种自适应抽样策略,CAS4DL(ChristOffel自适应采样用于深度学习),以提高DL的样本效率以用于多元功能近似。我们的新方法基于将DNN的第二至最后一层解释为该层节点定义的函数词典。然后,我们定义了一种自适应采样策略,该策略是由最近提出的线性近似方案提出的自适应采样方案动机的,其中该词典跨越的子空间的基督教词函数随机绘制了样品。我们提出了比较CAS4DL与标准蒙特卡洛(MC)采样的数值实验。我们的结果表明,CAS4DL通常可以在达到给定准确性所需的样品数量中节省大量,尤其是在平滑激活功能的情况下,与MC相比,它显示出更好的稳定性。因此,这些结果是将DL完全适应科学计算应用的有希望的一步。

The problem of approximating smooth, multivariate functions from sample points arises in many applications in scientific computing, e.g., in computational Uncertainty Quantification (UQ) for science and engineering. In these applications, the target function may represent a desired quantity of interest of a parameterized Partial Differential Equation (PDE). Due to the large cost of solving such problems, where each sample is computed by solving a PDE, sample efficiency is a key concerning these applications. Recently, there has been increasing focus on the use of Deep Neural Networks (DNN) and Deep Learning (DL) for learning such functions from data. In this work, we propose an adaptive sampling strategy, CAS4DL (Christoffel Adaptive Sampling for Deep Learning) to increase the sample efficiency of DL for multivariate function approximation. Our novel approach is based on interpreting the second to last layer of a DNN as a dictionary of functions defined by the nodes on that layer. With this viewpoint, we then define an adaptive sampling strategy motivated by adaptive sampling schemes recently proposed for linear approximation schemes, wherein samples are drawn randomly with respect to the Christoffel function of the subspace spanned by this dictionary. We present numerical experiments comparing CAS4DL with standard Monte Carlo (MC) sampling. Our results demonstrate that CAS4DL often yields substantial savings in the number of samples required to achieve a given accuracy, particularly in the case of smooth activation functions, and it shows a better stability in comparison to MC. These results therefore are a promising step towards fully adapting DL towards scientific computing applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源