论文标题

二进制耦合稀疏SYK:改进的量子混沌和全息图的模型

Binary-coupling sparse SYK: an improved model of quantum chaos and holography

论文作者

Tezuka, Masaki, Oktay, Onur, Rinaldi, Enrico, Hanada, Masanori, Nori, Franco

论文摘要

Sachdev-Ye-Kitaev(SYK)模型的稀疏版本重现了原始SYK模型的基本特征,同时减少了疾病参数的数量。在本文中,我们提出了对模型的进一步简化,我们称之为二进制耦合稀疏SYK模型。我们将非零耦合设置为$ \ pm 1 $,而不是从诸如高斯之类的连续分布中取样。值得注意的是,这种简化事实证明是一个改进:二进制耦合模型在频谱中表现出很强的相关性,这是原始SYK模型的重要特征,它导致随机Matrix普遍性的快速发作,从非零项的数量上则更有效。由于其简单性和缩放特性,该模型更适合于量子混沌行为和全息金属的模拟或数字量子模拟。

The sparse version of the Sachdev-Ye-Kitaev (SYK) model reproduces essential features of the original SYK model while reducing the number of disorder parameters. In this paper, we propose a further simplification of the model which we call the binary-coupling sparse SYK model. We set the nonzero couplings to be $\pm 1$, rather than being sampled from a continuous distribution such as Gaussian. Remarkably, this simplification turns out to be an improvement: the binary-coupling model exhibits strong correlations in the spectrum, which is the important feature of the original SYK model that leads to the quick onset of the random-matrix universality, more efficiently in terms of the number of nonzero terms. This model is better suited for analog or digital quantum simulations of quantum chaotic behavior and holographic metals due to its simplicity and scaling properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源