论文标题

通过歧管熵估计来打击gan中的模式崩溃

Combating Mode Collapse in GANs via Manifold Entropy Estimation

论文作者

Liu, Haozhe, Li, Bing, Wu, Haoqian, Liang, Hanbang, Huang, Yawen, Li, Yuexiang, Ghanem, Bernard, Zheng, Yefeng

论文摘要

近年来,生成的对抗网络(GAN)在各种任务和应用中都表现出了令人信服的结果。但是,模式崩溃仍然是gan中的一个关键问题。在本文中,我们提出了一条新颖的培训管道,以解决甘恩斯的模式崩溃问题。与现有方法不同,我们建议将鉴别器概括为特征嵌入,并最大程度地提高鉴别器学到的嵌入空间中分布的熵。具体而言,两个正则化术语,即深层局部线性嵌入(DLLE)和深度等距特征映射(疾病),旨在鼓励歧视者学习嵌​​入数据中的结构信息,以便可以很好地形成歧视者所学的嵌入空间。基于鉴别器支持的良好学习的嵌入空间,非参数熵估计器的设计旨在有效地最大化嵌入向量的熵,以最大化生成分布的熵的近似值。通过改善鉴别器并最大化嵌入空间中最相似样品的距离,我们的管道可以有效地减少模式崩溃的情况,而无需牺牲生成的样品的质量。广泛的实验结果表明,我们的方法的有效性超过了GAN基线,在Celeba上的MAF-GAN(9.13 vs. 12.43在FID中),超过了最新的基于动漫的能量模型,该模型(2.80 vs. 2.80 vs. 2.26 Inception Inception得分)。该代码可从https://github.com/haozheliu-st/mee获得

Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications in recent years. However, mode collapse remains a critical problem in GANs. In this paper, we propose a novel training pipeline to address the mode collapse issue of GANs. Different from existing methods, we propose to generalize the discriminator as feature embedding and maximize the entropy of distributions in the embedding space learned by the discriminator. Specifically, two regularization terms, i.e., Deep Local Linear Embedding (DLLE) and Deep Isometric feature Mapping (DIsoMap), are designed to encourage the discriminator to learn the structural information embedded in the data, such that the embedding space learned by the discriminator can be well-formed. Based on the well-learned embedding space supported by the discriminator, a non-parametric entropy estimator is designed to efficiently maximize the entropy of embedding vectors, playing as an approximation of maximizing the entropy of the generated distribution. By improving the discriminator and maximizing the distance of the most similar samples in the embedding space, our pipeline effectively reduces the mode collapse without sacrificing the quality of generated samples. Extensive experimental results show the effectiveness of our method, which outperforms the GAN baseline, MaF-GAN on CelebA (9.13 vs. 12.43 in FID) and surpasses the recent state-of-the-art energy-based model on the ANIME-FACE dataset (2.80 vs. 2.26 in Inception score). The code is available at https://github.com/HaozheLiu-ST/MEE

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源