论文标题
基于主题的动态网络的视觉分析
Motif-Based Visual Analysis of Dynamic Networks
论文作者
论文摘要
许多数据分析问题依赖于动态网络,例如社交或通信网络分析。由于包含难以捉摸的拓扑变化的潜在大规模数据,因此提供了此类动态网络的长序列的可扩展概述仍然具有挑战性。我们提出了两个基于互补的像素的可视化,它们反映了选定的子网络(主题)的出现,并提供了动态网络的时间量表概述:网络级人口普查(主题意义)(主题意义)与节点级别级别级别级别的子网络级指标(Graphlet Leger deger vectors)视图揭示结构性变化,趋势,偏见,以及范围,以及范围更改,趋势,以及范围更改,以及范围的状态,趋势,以及偏离趋势。与随机网络中的预期发生相比,该网络人口普查可显着捕获主题的发生,并暴露了动态网络中的结构变化。子网络指标在属于动态网络的单个网络中显示节点的局部拓扑邻域。基于链接的像素的可视化允许探索不同尺寸的网络中的主题,以分析动态网络内部和跨动态网络内的变化结构,例如,可以视觉分析网络拓扑的变化的形状和变化速率。我们描述了视觉模式的识别,还考虑了不同的重新排序策略以强调视觉模式。我们通过基于现实世界大规模动态网络的用例分析(例如Reddit或Facebook的不断发展的社交网络)来证明该方法的有用性。
Many data analysis problems rely on dynamic networks, such as social or communication network analyses. Providing a scalable overview of long sequences of such dynamic networks remains challenging due to the underlying large-scale data containing elusive topological changes. We propose two complementary pixel-based visualizations, which reflect occurrences of selected sub-networks (motifs) and provide a time-scalable overview of dynamic networks: a network-level census (motif significance profiles) linked with a node-level sub-network metric (graphlet degree vectors) views to reveal structural changes, trends, states, and outliers. The network census captures significantly occurring motifs compared to their expected occurrences in random networks and exposes structural changes in a dynamic network. The sub-network metrics display the local topological neighborhood of a node in a single network belonging to the dynamic network. The linked pixel-based visualizations allow exploring motifs in different-sized networks to analyze the changing structures within and across dynamic networks, for instance, to visually analyze the shape and rate of changes in the network topology. We describe the identification of visual patterns, also considering different reordering strategies to emphasize visual patterns. We demonstrate the approach's usefulness by a use case analysis based on real-world large-scale dynamic networks, such as the evolving social networks of Reddit or Facebook.