论文标题
使用语义细分的未知城市环境中的自动社会机器人导航
Autonomous social robot navigation in unknown urban environments using semantic segmentation
论文作者
论文摘要
对于在城市环境中导航的自主机器人,对于机器人而言,对于安全和社会符合性的考虑,机器人必须留在指定的旅行路径(即小路)上,并避免使用草和花园床等区域。本文为未知的城市环境提供了一种自主导航方法,该方法结合了语义细分和激光雷达数据的使用。所提出的方法使用分段的图像掩码创建环境的3D障碍物图,从中计算了人行道的边界。与现有方法相比,我们的方法不需要预构建的地图,并且可以对旅行的安全区域有3D的理解,从而使机器人能够计划通过人行道的任何路径。将我们的方法与仅使用LiDAR或仅使用语义分割的两种替代方案进行比较的实验表明,总体而言,我们所提出的方法在室外的成功率大于91%的成功率,并且在室内的66%大于66%。我们的方法使机器人始终保持旅行的安全路径,并减少了碰撞数量。
For autonomous robots navigating in urban environments, it is important for the robot to stay on the designated path of travel (i.e., the footpath), and avoid areas such as grass and garden beds, for safety and social conformity considerations. This paper presents an autonomous navigation approach for unknown urban environments that combines the use of semantic segmentation and LiDAR data. The proposed approach uses the segmented image mask to create a 3D obstacle map of the environment, from which, the boundaries of the footpath is computed. Compared to existing methods, our approach does not require a pre-built map and provides a 3D understanding of the safe region of travel, enabling the robot to plan any path through the footpath. Experiments comparing our method with two alternatives using only LiDAR or only semantic segmentation show that overall our proposed approach performs significantly better with greater than 91% success rate outdoors, and greater than 66% indoors. Our method enabled the robot to remain on the safe path of travel at all times, and reduced the number of collisions.