论文标题
学习面向任务的流以合成和真实的视频降级中相互指导的特征对齐
Learning Task-Oriented Flows to Mutually Guide Feature Alignment in Synthesized and Real Video Denoising
论文作者
论文摘要
视频Denoising的目的是消除视频中的噪音以恢复干净的视频。现有的一些作品表明,光流可以通过利用附近框架的其他空间 - 周期性线索来帮助脱泽。但是,流量估计本身也对噪声敏感,并且在较大的噪声水平下可能无法使用。为此,我们提出了一种新的多尺度精制光流引导视频DeNoising方法,该方法在不同的噪声水平上更可靠。我们的方法主要由面向脱氧的流动细化(DFR)模块和流引导的相互降解传播(FMDP)模块组成。与以前直接使用现成的流量解决方案的工作不同,DFR首先学习了强大的多尺度光学流,而FMDP通过逐步引入和完善更多流量信息从低分辨率到高分辨率来利用流量指导。加上真实的噪声降解合成,提出的多尺度流引导网络在合成高斯denoising和真实的视频denoising上都达到了最先进的性能。这些代码将公开可用。
Video denoising aims at removing noise from videos to recover clean ones. Some existing works show that optical flow can help the denoising by exploiting the additional spatial-temporal clues from nearby frames. However, the flow estimation itself is also sensitive to noise, and can be unusable under large noise levels. To this end, we propose a new multi-scale refined optical flow-guided video denoising method, which is more robust to different noise levels. Our method mainly consists of a denoising-oriented flow refinement (DFR) module and a flow-guided mutual denoising propagation (FMDP) module. Unlike previous works that directly use off-the-shelf flow solutions, DFR first learns robust multi-scale optical flows, and FMDP makes use of the flow guidance by progressively introducing and refining more flow information from low resolution to high resolution. Together with real noise degradation synthesis, the proposed multi-scale flow-guided denoising network achieves state-of-the-art performance on both synthetic Gaussian denoising and real video denoising. The codes will be made publicly available.