论文标题
样品平均条件基于风险的变异不等式的近似
Sample Average Approximation of Conditional Value-at-risk based Variational Inequalities
论文作者
论文摘要
本文着重于一类变异不等式(VIS),其中定义VI的映射由随机函数的组成条件值(CVAR)给出。我们专注于使用样品平均近似值来求解VI,其中VI的溶液是使用使用CVAR的经验估计值的样品平均VI的溶液进行估算的。我们为该方案建立了两个属性。首先,在随机映射的连续性和在有界集中的不确定性中采用值的不确定性,我们证明了渐近的一致性,确定样品平均问题解决方案的溶液几乎确定收敛到真实解决方案。其次,在随机函数的附加假设为Lipschitz的情况下,我们证明了指数收敛,其中近似解决方案和真实解之间的距离的概率比任何恒定方法都小于任何恒定方法的统一统一性的快速。对于随机函数在决策变量和不确定性中具有特定可分离形式的情况下,指数衰减结合了。我们将这些结果适应不确定的路由游戏的情况,并通过样本平均程序得出明确的样本保证,以获得基于CVAR的衣柜平衡。我们通过近似改良的Sioux Falls网络的基于CVAR的Wardrop Eqeilibria来说明我们的理论发现。
This paper focuses on a class of variational inequalities (VIs), where the map defining the VI is given by the component-wise conditional value-at-risk (CVaR) of a random function. We focus on solving the VI using sample average approximation, where solutions of the VI are estimated with solutions of a sample average VI that uses empirical estimates of the CVaRs. We establish two properties for this scheme. First, under continuity of the random map and the uncertainty taking values in a bounded set, we prove asymptotic consistency, establishing almost sure convergence of the solution of the sample average problem to the true solution. Second, under the additional assumption of random functions being Lipschitz, we prove exponential convergence where the probability of the distance between an approximate solution and the true solution being smaller than any constant approaches unity exponentially fast. The exponential decay bound is refined for the case where random functions have a specific separable form in the decision variable and uncertainty. We adapt these results to the case of uncertain routing games and derive explicit sample guarantees for obtaining a CVaR-based Wardrop equilibria using the sample average procedure. We illustrate our theoretical findings by approximating the CVaR-based Wardrop equilibria for a modified Sioux Falls network.