论文标题
基于像素语义的深度联合源通道编码
Deep Joint Source-Channel Coding Based on Semantics of Pixels
论文作者
论文摘要
智能任务的图像的语义信息隐藏在像素后面,像素的略有变化会影响智能任务的性能。为了在无线图像传输过程中保留像素背后的语义信息,以实现智能任务,我们提出了一种基于像素语义的联合源渠道编码方法,可以通过保留语义信息来改善接收器图像的智能任务的性能。具体而言,我们首先利用智能任务的感知结果梯度相对于像素来表示像素的语义重要性。然后,我们提取语义失真,并训练深关节源通道编码网络,目的是最大程度地减少语义失真而不是像素的失真。实验结果表明,与SOTA DEEP联合源通道编码方法和传统的分别源通道编码方法相比,提出的方法将智能分类任务的性能提高了1.38%和66%,并以相同的传输ra te和信噪比和信噪比。
The semantic information of the image for intelligent tasks is hidden behind the pixels, and slight changes in the pixels will affect the performance of intelligent tasks. In order to preserve semantic information behind pixels for intelligent tasks during wireless image transmission, we propose a joint source-channel coding method based on semantics of pixels, which can improve the performance of intelligent tasks for images at the receiver by retaining semantic information. Specifically, we first utilize gradients of intelligent task's perception results with respect to pixels to represent the semantic importance of pixels. Then, we extract the semantic distortion, and train the deep joint source-channel coding network with the goal of minimizing semantic distortion rather than pixel's distortion. Experiment results demonstrate that the proposed method improves the performance of the intelligent classification task by 1.38% and 66% compared with the SOTA deep joint source-channel coding method and the traditional separately source-channel coding method at the same transmission ra te and signal-to-noise ratio.