论文标题
核心型可以足够
The core groupoid can suffice
论文作者
论文摘要
这项工作是基于对尼古拉斯·库恩(Nicholas Kuhn)的论文的研究,题为“非描述特征中有限领域的通用表示理论”。我们的目标是抽象获得函子类别之间获得等效性所需的分类结构,$ [\ MATHSCR {f},\ MATHSCR {V}] $和$ [\ MATHSCR {G},\ MATHSCR {V}] $ wery $ \ MATHSCR {g} $是$ $ $ $ \ \ \ \ \ \ Math $ \ mathscr {v} $是通勤环上的一个模块类别。
This work results from a study of Nicholas Kuhn's paper entitled "Generic representation theory of finite fields in nondescribing characteristic". Our goal is to abstract the categorical structure required to obtain an equivalence between functor categories $[\mathscr{F},\mathscr{V}]$ and $[\mathscr{G},\mathscr{V}]$ where $\mathscr{G}$ is the core groupoid of the category $\mathscr{F}$ and $\mathscr{V}$ is a category of modules over a commutative ring.