论文标题
具有广义动量配方的等离子体的粒子中的粒子方法,第一部分:模型配方
A Particle-in-cell Method for Plasmas with a Generalized Momentum Formulation, Part I: Model Formulation
论文作者
论文摘要
本文为Vlasov-Maxwell系统制定了一种新的粒子中的粒子方法。在洛伦兹仪条件下,麦克斯韦的电磁场方程可以写为标量和矢量波方程的集合。用于田间的电势的使用激发了采用用于采用广义动量的颗粒的汉密尔顿公式。粒子的最终更新仅需要了解田地及其空间衍生物。提出了一种用于构建这些空间衍生物的分析方法,该方法利用了在波动方程中利用在田间求解器中使用的基本积分解决方案。此外,这些衍生物被证明在时间和空间中以与磁场相同的速率收敛。我们在这项工作中考虑的现场求解器在空间上是一阶准确的,并且属于无条件稳定的较大方法,可以解决几何形状,并利用快速求和方法来提高效率。我们在几个公认的基准问题上演示了该方法,并通过与文献中提出的标准方法进行比较来证明所提出的配方的功效。新方法即使在等离子体Debye长度接近网格间距的情况下,也显示了与网格无关的数值加热性能。在新方法中使用高阶空间近似值意味着为了达到固定精度而需要更少的网格点。我们的结果还表明,与标准的显式方法相比,每个单元格的模拟粒子较少,可以使用新方法,从而允许进一步的计算节省。
This paper formulates a new particle-in-cell method for the Vlasov-Maxwell system. Under the Lorenz gauge condition, Maxwell's equations for the electromagnetic fields can be written as a collection of scalar and vector wave equations. The use of potentials for the fields motivates the adoption of a Hamiltonian formulation for particles that employs the generalized momentum. The resulting updates for particles require only knowledge of the fields and their spatial derivatives. An analytical method for constructing these spatial derivatives is presented that exploits the underlying integral solution used in the field solver for the wave equations. Moreover, these derivatives are shown to converge at the same rate as the fields in the both time and space. The field solver we consider in this work is first-order accurate in time and fifth-order accurate in space and belongs to a larger class of methods which are unconditionally stable, can address geometry, and leverage fast summation methods for efficiency. We demonstrate the method on several well-established benchmark problems, and the efficacy of the proposed formulation is demonstrated through a comparison with standard methods presented in the literature. The new method shows mesh-independent numerical heating properties even in cases where the plasma Debye length is close to the grid spacing. The use of high-order spatial approximations in the new method means that fewer grid points are required in order to achieve a fixed accuracy. Our results also suggest that the new method can be used with fewer simulation particles per cell compared to standard explicit methods, which permits further computational savings.