论文标题
一个过滤的映射锥形公式,用于打结子午线的电缆
A filtered mapping cone formula for cables of the knot meridian
论文作者
论文摘要
我们构建了一个过滤的映射锥配方,该配方在任何合理的手术中都计算$(n,1)$的打结浮子络合物 - $(n,1)$ - 大手术和Hedden Levine的过滤式映射锥形的$(n,1)$ - 概括了Truong的结果。作为一个应用程序,我们表明,对于任何$ i> j \ geq 0 $,Integer同源性领域中存在结中的结,其中$φ_{i,j} $是Dai-stoffregen-Stoffregen-Truong定义的一致性同源。
We construct a filtered mapping cone formula that computes the knot Floer complex of the $(n,1)$--cable of the knot meridian in any rational surgery, generalizing Truong's result about the $(n,1)$--cable of the knot meridian in large surgery and Hedden-Levine's filtered mapping cone formula. As an application, we show that there exist knots in integer homology spheres with arbitrary $φ_{i,j}$ values for any $i>j\geq 0$, where $φ_{i,j}$ are the concordance homomorphisms defined by Dai-Hom-Stoffregen-Truong.