论文标题

在振荡宣传的影响下的逆势选民模型:共识,双峰行为和随机共鸣

Contrarian Voter Model under the influence of an Oscillating Propaganda: Consensus, Bimodal behavior and Stochastic Resonance

论文作者

Gimenez, M. Cecilia, Reinaudi, Luis, Vazquez, Federico

论文摘要

我们研究了一个社会在外部振荡宣传和随机噪声的影响下的逆势选民模型。人口的每个代理人都可以在给定问题上持有两种可能的意见之一 - against或受到赞成,并在模仿动态(选民行为)或反对准动态(逆势行为)之后与邻居互动:每个代理人采用随机邻居的看法,与时间相关的可能性$ p(t)$,或与可能性相反的观点(t)$,或与1-P(t)$ 1-P(t)$ 1-P(t)$ 1-P(t)$ 1-P(T)$ 1-P(T)。模仿概率$ p(t)$由社会温度$ t $控制,并且根据模仿外部宣传的影响的定期领域的时间变化,因此选民更容易采用与该领域相符的意见。我们在完整的图形和格子中模拟了该模型,并发现该系统表现出各种各样的行为,因为$ t $是多种多样的:$ t = 0 $的意见共识,这是$ t <t_c $的双峰行为,一种振动性的振动性,平均意见为$ t> t_c $ t_c $ for $ t_c $和$ t $ t $ t $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $。过渡温度$ t_c $随着人口大小$ n $ as $ t_c \ simeq 2/\ ln n $在完整图中消失。此外,双峰阶段中的居住时间分布$ t_r $大约衰减为$ t_r^{ - 3/2} $。在振荡性方面,我们在给定温度$ t^*$下发现了一种随机共振样现象。同样,平均场分析结果表明,意见振荡在中等温度下达到最大幅度,并且对降低$ t $降低的场的滞后。

We study the contrarian voter model for opinion formation in a society under the influence of an external oscillating propaganda and stochastic noise. Each agent of the population can hold one of two possible opinions on a given issue --against or in favor, and interacts with its neighbors following either an imitation dynamics (voter behavior) or an anti-alignment dynamics (contrarian behavior): each agent adopts the opinion of a random neighbor with a time-dependent probability $p(t)$, or takes the opposite opinion with probability $1-p(t)$. The imitation probability $p(t)$ is controlled by the social temperature $T$, and varies in time according to a periodic field that mimics the influence of an external propaganda, so that a voter is more prone to adopt an opinion aligned with the field. We simulate the model in complete graph and in lattices, and find that the system exhibits a rich variety of behaviors as $T$ is varied: opinion consensus for $T=0$, a bimodal behavior for $T<T_c$, an oscillatory behavior where the mean opinion oscillates in time with the field for $T>T_c$, and full disorder for $T \gg 1$. The transition temperature $T_c$ vanishes with the population size $N$ as $T_c \simeq 2/\ln N$ in complete graph. Besides, the distribution of residence times $t_r$ in the bimodal phase decays approximately as $t_r^{-3/2}$. Within the oscillatory regime, we find a stochastic resonance-like phenomenon at a given temperature $T^*$. Also, mean-field analytical results show that the opinion oscillations reach a maximum amplitude at an intermediate temperature, and that exhibit a lag respect to the field that decreases with $T$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源