论文标题
关于置换问题的健身景观分析:从距离指标到突变操作员选择
On Fitness Landscape Analysis of Permutation Problems: From Distance Metrics to Mutation Operator Selection
论文作者
论文摘要
在本文中,我们探讨了理论,并扩展了健身景观分析的实践,以在排列空间中优化问题。用于健身景观分析的许多计算和分析工具,例如健身距离相关性,都需要确定距离度量标准,以测量不同解决方案与问题的相似性。我们从对置换的可用距离指标进行调查,然后使用主组件分析对这些指标进行分类。该分析的结果与通过较少形式的手段产生的置换问题类型的现有分类(包括A permut,R-Permunt和P-Permunty类型)产生的结果,这些类型对问题的绝对位置,元素的相对位置,还是元素对的一般优先元的绝对位置,是对解决方案的主要影响。此外,正式分析还标识了这些问题类别中的子类型。我们看到,分类可以帮助基于优化问题功能来识别适当的指标,以用于健身景观分析。使用每个类的优化问题,我们还演示了分类方案如何随后在进化算法中的突变算子选择。由此,我们将各种突变操作员的分类作为与指标的分类。我们对置换指标,置换突变算子和相关进化算法的实现可在一对开源Java库中获得。重新创建我们的分析和实验结果所需的所有代码也可以作为开源。
In this paper, we explore the theory and expand upon the practice of fitness landscape analysis for optimization problems over the space of permutations. Many of the computational and analytical tools for fitness landscape analysis, such as fitness distance correlation, require identifying a distance metric for measuring the similarity of different solutions to the problem. We begin with a survey of the available distance metrics for permutations, and then use principal component analysis to classify these metrics. The result of this analysis aligns with existing classifications of permutation problem types produced through less formal means, including the A-permutation, R-permutation, and P-permutation types, which classifies problems by whether absolute position of permutation elements, relative positions of elements, or general precedence of pairs of elements, is the dominant influence over solution fitness. Additionally, the formal analysis identifies subtypes within these problem categories. We see that the classification can assist in identifying appropriate metrics based on optimization problem feature for use in fitness landscape analysis. Using optimization problems of each class, we also demonstrate how the classification scheme can subsequently inform the choice of mutation operator within an evolutionary algorithm. From this, we present a classification of a variety of mutation operators as a counterpart to that of the metrics. Our implementations of the permutation metrics, permutation mutation operators, and associated evolutionary algorithm, are available in a pair of open source Java libraries. All of the code necessary to recreate our analysis and experimental results are also available as open source.