论文标题

稀疏多项式优化:理论与实践

Sparse Polynomial Optimization: Theory and Practice

论文作者

Magron, Victor, Wang, Jie

论文摘要

在一组多项式不等式上最小化多项式的问题是NP-顽固的非凸问题。得益于实际代数几何形状的有力结果,人们可以将此问题转换为有限维凸问题的嵌套序列。在关联的层次结构的每个步骤中,都需要解决固定尺寸的半决赛程序,该程序又可以使用有效的数值工具来解决。但是,实际上,没有免费的午餐,这种优化方法通常包括严重的可伸缩性问题。幸运的是,对于许多应用程序,我们可以查看眼睛中的问题,并利用描述问题的成本和约束所产生的固有数据结构,例如稀疏性或对称性。 本书提出了一些研究工作,以通过重要的计算含义来应对这一科学挑战,并提供了替代优化方案的开发,这些方案至少在某些已确定的问题类别中,可以很好地扩展计算复杂性。本书中提出的算法框架主要利用输入数据的稀疏结构来解决大规模的多项式优化问题。我们提出了稀疏性探索放松的层次结构,以解决不受约束或受约束的问题。与密集的层次结构相反,它们在实践中提供了更快的解决方案近似值,但也具有相同的理论收敛保证。我们的框架不仅限于静态多项式优化,因此我们揭示了由动态系统分析引起的近似值的近似值。我们还向涉及非交易变量的问题(例如,任意大小或量子物理运算符的矩阵)提供了各种扩展。

The problem of minimizing a polynomial over a set of polynomial inequalities is an NP-hard non-convex problem. Thanks to powerful results from real algebraic geometry, one can convert this problem into a nested sequence of finite-dimensional convex problems. At each step of the associated hierarchy, one needs to solve a fixed size semidefinite program, which can be in turn solved with efficient numerical tools. On the practical side however, there is no-free lunch and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem, for instance sparsity or symmetries. This book presents several research efforts to tackle this scientific challenge with important computational implications, and provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. The presented algorithmic framework in this book mainly exploits the sparsity structure of the input data to solve large-scale polynomial optimization problems. We present sparsity-exploiting hierarchies of relaxations, for either unconstrained or constrained problems. By contrast with the dense hierarchies, they provide faster approximation of the solution in practice but also come with the same theoretical convergence guarantees. Our framework is not restricted to static polynomial optimization, and we expose hierarchies of approximations for values of interest arising from the analysis of dynamical systems. We also present various extensions to problems involving noncommuting variables, e.g., matrices of arbitrary size or quantum physic operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源