论文标题

在非交通环上的矩形上的异性行动

Birational rowmotion on a rectangle over a noncommutative ring

论文作者

Grinberg, Darij, Roby, Tom

论文摘要

我们将矩形POSET的Birational Rowmotion的周期性扩展到基本场被非交通环(在适当条件下)取代的情况下。这解决了2014年以来的猜想。证明使用了一种新颖的方法,并且是完全独立的。 考虑有限poset $ p $ by $ \ left | p \ right |的标记。 + 2 $元素的元素$ \ mathbb {k} $:一个与每个poset元素关联的标签,以及$ \ hat {p} $中添加的顶部和底部元素的两个常数标签。 * Birational Rowmotion*是此类标记的部分地图。它最初是由爱因斯坦(Einstein)和propp定义的,$ \ mathbb {k} = \ mathbb {r} $作为 *piewise-linear rowmotion *的提升(通过偏齿化),在顺序的potytope $ \ \ m m ianccal {o}(o}(o}(p)(p):= \ = \ fext-prowd { \ to [0,1] \} $。反过来,后者将$ p $的订单理想集(或更正确的订单过滤器)集合在订单理想集(或更正确的一组订单过滤器)上,这对应于$ \ Mathcal {o}(p)$。这些组合图的动力学特性有时(但并非总是)扩展到异性水平,而在异性水平上证明的结果始终暗示其组合对应物。允许$​​ \ mathbb {k} $是非共同努力的,我们进一步概括了同性恋水平,实际上,在此步骤中确实丢失了一些属性。 在2014年,作者在矩形Posets上(当$ p $是两个链的产物)上为$ \ mathbb {k} $一个领域提供了第一个周期性证明,并指出了它在非共同情况下(以适当的扭曲形式)生存(以适当的扭曲形式)。在本文中,我们证明了这种非交通周期性和伴随的反互惠公式。我们以一些关于其他POSET的周期性的猜想结尾,以及我们的结果是否可以扩展到(非交换性)半半的问题。

We extend the periodicity of birational rowmotion for rectangular posets to the case when the base field is replaced by a noncommutative ring (under appropriate conditions). This resolves a conjecture from 2014. The proof uses a novel approach and is fully self-contained. Consider labellings of a finite poset $P$ by $\left|P\right| + 2$ elements of a ring $\mathbb{K}$: one label associated with each poset element and two constant labels for the added top and bottom elements in $\hat{P}$. *Birational rowmotion* is a partial map on such labellings. It was originally defined by Einstein and Propp for $\mathbb{K}=\mathbb{R}$ as a lifting (via detropicalization) of *piecewise-linear rowmotion*, a map on the order polytope $\mathcal{O}(P) := \{\text{order-preserving } f: P \to[0,1]\}$. The latter, in turn, extends the well-studied rowmotion map on the set of order ideals (or more properly, the set of order filters) of $P$, which correspond to the vertices of $\mathcal{O}(P)$. Dynamical properties of these combinatorial maps sometimes (but not always) extend to the birational level, while results proven at the birational level always imply their combinatorial counterparts. Allowing $\mathbb{K}$ to be noncommutative, we generalize the birational level even further, and some properties are in fact lost at this step. In 2014, the authors gave the first proof of periodicity for birational rowmotion on rectangular posets (when $P$ is a product of two chains) for $\mathbb{K}$ a field, and conjectured that it survives (in an appropriately twisted form) in the noncommutative case. In this paper, we prove this noncommutative periodicity and a concomitant antipodal reciprocity formula. We end with some conjectures about periodicity for other posets, and the question of whether our results can be extended to (noncommutative) semirings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源