论文标题

具有梯度术语的K-Hessian类型方程的整个亚物业

Entire subsolutions of a kind of k-Hessian type equations with gradient terms

论文作者

Ji, Jingwen, Jiang, Feida, Li, Mengni

论文摘要

在本文中,我们考虑了一种$ k $ -Hessian类型方程$ s_k^{\ frac {\ frac {1} {k}}(d^2u+μ| d u | i)= f(u)$ in $ \ m athbb {r}^n $,并提供$ f $的必要和不合时宜的条件。凯勒·塞曼(Keller-Sosserman)条件。存在和不存在的结果分别以参数$μ$的不同范围证明,这是JI和BAO(Proc Amer Math Soc 138:175--188,2010)的标准Hessian方程式案例($μ= 0 $)。半线性案例($ k = 1 $)和完全非线性案例($ k \ ge 2 $)之间的差异也是如此。

In this paper, we consider a kind of $k$-Hessian type equations $S_k^{\frac{1}{k}}(D^2u+μ|D u|I)= f(u)$ in $\mathbb{R}^n$, and provide a necessary and sufficient condition of $f$ on the existence and nonexistence of entire admissible subsolutions, which can be regarded as a generalized Keller-Osserman condition. The existence and nonexistence results are proved in different ranges of the parameter $μ$ respectively, which embrace the standard Hessian equation case ($μ=0$) by Ji and Bao (Proc Amer Math Soc 138: 175--188, 2010) as a typical example. The difference between the semilinear case ($k=1$) and the fully nonlinear case ($k\ge 2$) is also concerned.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源