论文标题

基于神经进化的分类器,用于热带森林中的森林砍伐检测

Neuroevolution-based Classifiers for Deforestation Detection in Tropical Forests

论文作者

Pimenta, Guilherme A., Dallaqua, Fernanda B. J. R., Fazenda, Alvaro, Faria, Fabio A.

论文摘要

热带森林代表了地球上许多物种的动植物的家园,保留了数十亿吨的碳足迹,促进云层和雨水形成,这意味着在全球生态系统中起着至关重要的作用,除了代表无数土著人民的家中。不幸的是,由于森林砍伐或退化,每年丧失数百万公顷的热带森林。为了减轻这一事实,除了预防和惩罚罪犯的公共政策外,还使用了监测和森林砍伐检测计划。这些监视/检测程序通常使用遥感图像,图像处理技术,机器学习方法和专家照片解释来分析,识别和量化森林覆盖的可能变化。几个项目提出了不同的计算方法,工具和模型,以有效地识别最近的森林砍伐区域,从而改善了热带森林中的森林砍伐监测计划。从这个意义上讲,本文提出了基于神经进化技术(整洁)的模式分类器在热带森林森林砍伐检测任务中的使用。此外,已经创建并获得了一个名为E-Neat的新颖框架,并实现了超过$ 90 \%$的分类结果,用于在目标应用中使用极为降低和有限的训练集,用于学习分类模型。这些结果代表了本文比较的最佳基线合奏方法的相对增益$ 6.2 \%$

Tropical forests represent the home of many species on the planet for flora and fauna, retaining billions of tons of carbon footprint, promoting clouds and rain formation, implying a crucial role in the global ecosystem, besides representing the home to countless indigenous peoples. Unfortunately, millions of hectares of tropical forests are lost every year due to deforestation or degradation. To mitigate that fact, monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals. These monitoring/detection programs generally use remote sensing images, image processing techniques, machine learning methods, and expert photointerpretation to analyze, identify and quantify possible changes in forest cover. Several projects have proposed different computational approaches, tools, and models to efficiently identify recent deforestation areas, improving deforestation monitoring programs in tropical forests. In this sense, this paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks. Furthermore, a novel framework called e-NEAT has been created and achieved classification results above $90\%$ for balanced accuracy measure in the target application using an extremely reduced and limited training set for learning the classification models. These results represent a relative gain of $6.2\%$ over the best baseline ensemble method compared in this paper

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源