论文标题

融合框架同质和通过梯度下降拧紧融合框架

Fusion Frame Homotopy and Tightening Fusion Frames by Gradient Descent

论文作者

Needham, Tom, Shonkwiler, Clayton

论文摘要

有限维时空间的有限帧或跨越集合是信号处理中的无处不在的工具。最近有很多工作要了解具有规定属性的有限框架集合的全球结构,例如单位规范框架的空间。我们将其中的一些结果扩展到更通用的融合框架设置 - 融合框架是有限维的Hilbert Space的子空间的集合,其属性可以从其预测列表中恢复任何向量。紧密度的概念扩展到融合框架,我们考虑以下基本问题:收集了与规定的子空间维度路径相连的紧密融合框架的收集?我们以肯定的方式回答(概括)这个问题,扩大了Cahill,Mixon和Strawn证明的单位规范框架的类似结果。我们还扩展了Benedetto和Fickus的结果,后者定义了单位固定框架空间(框架电位)的自然功能,表明其全局最小化器很紧密,并且表明它没有虚假的局部最小化器,这意味着可以使用梯度下降来构建单位符号紧密框架。我们证明了Casazza和Fickus的融合框架电势的类似结果,这意味着,当存在紧密的融合框架以适合给定的尺寸选择时,可以通过梯度下降来构建它们。我们的证明使用符号几何形状和芒福德的几何不变理论的技术。

Finite frames, or spanning sets for finite-dimensional Hilbert spaces, are a ubiquitous tool in signal processing. There has been much recent work on understanding the global structure of collections of finite frames with prescribed properties, such as spaces of unit norm tight frames. We extend some of these results to the more general setting of fusion frames -- a fusion frame is a collection of subspaces of a finite-dimensional Hilbert space with the property that any vector can be recovered from its list of projections. The notion of tightness extends to fusion frames, and we consider the following basic question: is the collection of tight fusion frames with prescribed subspace dimensions path connected? We answer (a generalization of) this question in the affirmative, extending the analogous result for unit norm tight frames proved by Cahill, Mixon and Strawn. We also extend a result of Benedetto and Fickus, who defined a natural functional on the space of unit norm frames (the frame potential), showed that its global minimizers are tight, and showed that it has no spurious local minimizers, meaning that gradient descent can be used to construct unit-norm tight frames. We prove the analogous result for the fusion frame potential of Casazza and Fickus, implying that, when tight fusion frames exist for a given choice of dimensions, they can be constructed via gradient descent. Our proofs use techniques from symplectic geometry and Mumford's geometric invariant theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源