论文标题

通过合成事件指导的低光视频增强

Low-Light Video Enhancement with Synthetic Event Guidance

论文作者

Liu, Lin, An, Junfeng, Liu, Jianzhuang, Yuan, Shanxin, Chen, Xiangyu, Zhou, Wengang, Li, Houqiang, Wang, Yanfeng, Tian, Qi

论文摘要

低光视频增强(LLVE)是许多应用程序,例如拍摄和自动驾驶,是一项重要但又具有挑战性的任务。与单图像低光增强不同,大多数LLVE方法都利用相邻帧的时间信息来恢复颜色并删除目标框架的噪声。但是,这些算法基于多帧对齐和增强的框架,在遇到极端低光或快速运动时可能会产生多帧融合伪像。在本文中,受到低潜伏期和高动态事件范围的启发,我们使用来自多个帧的合成事件来指导低光视频的增强和恢复。我们的方法包含三个阶段:1)事件合成和增强,2)事件和图像融合,以及3)低光增强。在此框架中,我们分别在第二阶段和第三阶段设计了两个新型模块(事件图像融合变换和事件引导的双分支)。广泛的实验表明,我们的方法在合成和真实LLVE数据集上都优于现有的低光视频或单个图像增强方法。

Low-light video enhancement (LLVE) is an important yet challenging task with many applications such as photographing and autonomous driving. Unlike single image low-light enhancement, most LLVE methods utilize temporal information from adjacent frames to restore the color and remove the noise of the target frame. However, these algorithms, based on the framework of multi-frame alignment and enhancement, may produce multi-frame fusion artifacts when encountering extreme low light or fast motion. In this paper, inspired by the low latency and high dynamic range of events, we use synthetic events from multiple frames to guide the enhancement and restoration of low-light videos. Our method contains three stages: 1) event synthesis and enhancement, 2) event and image fusion, and 3) low-light enhancement. In this framework, we design two novel modules (event-image fusion transform and event-guided dual branch) for the second and third stages, respectively. Extensive experiments show that our method outperforms existing low-light video or single image enhancement approaches on both synthetic and real LLVE datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源