论文标题

$ x_0(n)$的Bielliptic商曲线曲线

Bielliptic quotient modular curves of $X_0(N)$

论文作者

Bars, Francesc, Kamel, Mohamed, Schweizer, Andreas

论文摘要

令$ n \ geq 1 $为非平方的免费整数,让$ w_n $为$ x_0(n)$的Atkin-Lehner参数组的非平凡子组,使模块化曲线$ x_0(n)/w_n $至少具有两个属。我们确定所有对$(n,w_n)$,以便$ x_0(n)/w_n $是bielliptic曲线,对$ x_0(n)/w_n $的对$(n,w_n)$,具有无限数量的四倍点,超过$ \ nathbb {q} $。

Let $N\geq 1$ be a non-square free integer and let $W_N$ be a non-trivial subgroup of the group of the Atkin-Lehner involutions of $X_0(N)$ such that the modular curve $X_0(N)/W_N$ has genus at least two. We determine all pairs $(N,W_N)$ such that $X_0(N)/W_N$ is a bielliptic curve and the pairs $(N,W_N)$ such that $X_0(N)/W_N$ has an infinite number of quadratic points over $\mathbb{Q}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源