论文标题
认知无线网络中的盲目集合算法的Quariny编码和基于矩阵结构的频道跳跃算法
A Quinary Coding and Matrix Structure-based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks
论文作者
论文摘要
分布式认知无线电网络(DCRN)中的多渠道盲目集合问题是指网络中的用户在没有任何先验知识的情况下如何在同一时间段上跳到同一频道(即,每个用户都不知道其他用户的信息)。频道跳(CH)技术是解决这个盲人聚会问题的典型解决方案。在本文中,我们提出了一种基于QCMS-CH的Quariny编码和基于矩阵结构的CH算法。 QCMS-CH算法可以保证在异步时钟方案(即用户之间任意时间漂移),异质频道(即,可用的可用频道集合的用户是独特的)和对称角色(即,所有用户)扮演的角色(即,所有用户)扮演着同一角色)。 QCMS-CH算法首先表示一个随机选择的通道(由R表示)为固定长度的第四纪数。然后,它根据精心设计的第四纪Quinary-Quarion编码表编码四级数字序列,并带有前缀“ R00”。最后,它根据引导序列和六种不同类型的精心生成的子序列构建CH矩阵列。用户可以通过行访问CH Matrix,并因此执行其频道跳跃以尝试与其他用户聚会。我们证明了QCMS-CH的正确性,并在其最大汇总时间(MTTR)上得出上限。仿真结果表明,QCMS-CH算法在MTTR和预期的时间段(ETTR)方面优于最先进的算法。
The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel hopping to attempt to rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).