论文标题
型号睫状地毯中的自发相协调和流体泵送
Spontaneous phase coordination and fluid pumping in model ciliary carpets
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Ciliated tissues such as in the mammalian lungs, brains, and reproductive tracts, are specialized to pump fluid. They generate flows by the collective activity of hundreds of thousands of individual cilia that beat in a striking metachronal wave pattern. Despite progress in analyzing cilia coordination, a general theory that links coordination and fluid pumping in the limit of large arrays of cilia remains lacking. Here, we conduct in-silico experiments with thousands of hydrodynamically-interacting cilia, and we develop a continuum theory in the limit of infinitely-many independently beating cilia by combining tools from active matter and classical Stokes flow. We find, in both simulations and theory, that isotropic and synchronized ciliary states are unstable. Traveling waves emerge regardless of initial conditions, but the characteristics of the wave and net flows depend on cilia and tissue properties. That is, metachronal phase coordination is a stable global attractor in large ciliary carpets, even under finite perturbations to cilia and tissue properties. These results support the notion that functional specificity of ciliated tissues is interlaced with the tissue architecture and cilia beat kinematics and open up the prospect of establishing structure-to-function maps from cilium-level beat to tissue-level coordination and fluid pumping.