论文标题
部分可观测时空混沌系统的无模型预测
Adversarial Vulnerability of Temporal Feature Networks for Object Detection
论文作者
论文摘要
考虑到整个时间领域的信息有助于改善自动驾驶中的环境感知。但是,到目前为止,尚未研究时间融合的神经网络是否容易受到故意产生的扰动,即对抗性攻击,或者时间历史是否是对它们的固有防御。在这项工作中,我们研究了用于对象检测的时间特征网络是否容易受到通用对抗性攻击的影响。我们评估了两种类型的攻击:整个图像和本地界面贴片的不可察觉噪声。在这两种情况下,使用PGD以白盒方式生成扰动。我们的实验证实,即使攻击时间的一部分时间都足以欺骗网络。我们在视觉上评估生成的扰动,以了解攻击功能。为了增强鲁棒性,我们使用5-PGD进行对抗训练。我们对Kitti和Nuscenes数据集的实验表明,通过K-PGD进行了鲁棒化的模型能够承受研究的攻击,同时保持基于地图的性能与未破坏模型的攻击。
Taking into account information across the temporal domain helps to improve environment perception in autonomous driving. However, it has not been studied so far whether temporally fused neural networks are vulnerable to deliberately generated perturbations, i.e. adversarial attacks, or whether temporal history is an inherent defense against them. In this work, we study whether temporal feature networks for object detection are vulnerable to universal adversarial attacks. We evaluate attacks of two types: imperceptible noise for the whole image and locally-bound adversarial patch. In both cases, perturbations are generated in a white-box manner using PGD. Our experiments confirm, that attacking even a portion of a temporal input suffices to fool the network. We visually assess generated perturbations to gain insights into the functioning of attacks. To enhance the robustness, we apply adversarial training using 5-PGD. Our experiments on KITTI and nuScenes datasets demonstrate, that a model robustified via K-PGD is able to withstand the studied attacks while keeping the mAP-based performance comparable to that of an unattacked model.