论文标题

非最小动力学耦合模型的各向异性通胀

Anisotropic inflation in non-minimal kinetic coupling model

论文作者

Goodarzi, Parviz

论文摘要

我们研究了非最小导数耦合模型中的各向异性通胀,其中标量场非最小耦合到$ u(1)$量规场和标量场的衍生物非最低限量耦合到爱因斯坦张量。在框架内,我们在此模型中发现了幂律各向异性解决方案,当时充气电位和规格动力函数都是高摩擦状态中的幂律类型。我们显示了各向异性与膨胀速率的比率几乎恒定,与该理论的慢速参数成正比。作为演示,我们考虑对模型的数值计算,以证明各向异性通过更改二次通货膨胀电位的模型参数的行为。对于模型参数的广泛值,有各向异性吸引子解决方案。我们在数值上和分析上都表明,有两个通货膨胀阶段,类似于最小耦合模型,各向同性和各向异性相中的各向异性通胀。我们可以通过更改量规耦合常数或非最小导数耦合常数来更改与慢速通胀相对应的E折数量。在本研究中,与数值解决方案和分析解决方案有最佳的一致性。

We study anisotropic inflation in non-minimal derivative coupling model where the scalar field non-minimally coupled to the $U(1)$ gauge fields and derivative of the scalar field non-minimally coupled to the Einstein tensor. Within the framework we find power-law anisotropic solutions in this model when both the inflaton potential and the gauge kinetic function are power-law type in the high friction regime. We show the ratio of anisotropy to the expansion rate is nearly constant, small and proportional to the slow-roll parameters of the theory. As a demonstration, we consider numerically calculation of the model to show that the behavior of anisotropy by changing the parameters of the model for quadratic inflationary potential. There is anisotropic attractor solution for a wide range of values of the model parameters. We show both numerically and analytically that there are two phases of inflation, similar to those an anisotropic inflation in minimal coupling model, isotropic and anisotropic phase. We can change the number of e-folds corresponding to each phase of slow roll inflation by changing the gauge coupling constant or non-minimal derivative coupling constant. There are the best agreement with the numerically solutions and analytically solutions in this investigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源