论文标题

口面评估视频的自动时间细分

Automated Temporal Segmentation of Orofacial Assessment Videos

论文作者

Naeini, Saeid Alavi, Simmatis, Leif, Jafari, Deniz, Guarin, Diego L., Yunusova, Yana, Taati, Babak

论文摘要

计算机视觉技术可以帮助自动化或部分自动化口面损伤的临床检查,以提供准确和客观的评估。为了开发此类自动化系统,我们评估了两种方法在口面评估视频中检测和时间分段(解析)重复。从多伦多神经曲面数据集获得了患有肌萎缩性侧索硬化症(ALS)和健康对照(HC)个体参与者的录制视频。检查了两种用于重复检测和解析的方法:一种基于迹象标志性的工程特征和上嘴唇和下唇的垂直连接之间的距离(基线分析)之间的距离(基线分析),另一种是使用预培养的基于培训的变压器的深度学习模型,称为repnet(Dwibedi等)(Dwibedi et al,2020),并散发自动定期,并可观,并可检测到周期性的周期性周期性,并确定了时期的时间,并确定了时期的时间,并确定了时期的时期,并探测了时期的时期,并以期定期,并确定了时期的时期。视频数据中的重复。在对两项口面评估任务的实验评估中 - 重复最大的口腔张开(打开)并重复“购买Bobby a Puppy”(BBP)(BBP) - repnet提供了比基于地标的方法更好的解析方法,该方法通过较高的平均相交相交(IOU)与地面真理手动解析有关。使用Repnet自动解析还根据BBP重复的持续时间清楚地分离了HC和ALS参与者,而基于里程碑的方法则不能。

Computer vision techniques can help automate or partially automate clinical examination of orofacial impairments to provide accurate and objective assessments. Towards the development of such automated systems, we evaluated two approaches to detect and temporally segment (parse) repetitions in orofacial assessment videos. Recorded videos of participants with amyotrophic lateral sclerosis (ALS) and healthy control (HC) individuals were obtained from the Toronto NeuroFace Dataset. Two approaches for repetition detection and parsing were examined: one based on engineered features from tracked facial landmarks and peak detection in the distance between the vermilion-cutaneous junction of the upper and lower lips (baseline analysis), and another using a pre-trained transformer-based deep learning model called RepNet (Dwibedi et al, 2020), which automatically detects periodicity, and parses periodic and semi-periodic repetitions in video data. In experimental evaluation of two orofacial assessments tasks, - repeating maximum mouth opening (OPEN) and repeating the sentence "Buy Bobby a Puppy" (BBP) - RepNet provided better parsing than the landmark-based approach, quantified by higher mean intersection-over-union (IoU) with respect to ground truth manual parsing. Automated parsing using RepNet also clearly separated HC and ALS participants based on the duration of BBP repetitions, whereas the landmark-based method could not.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源