论文标题
半监督的流形学习具有复杂性解耦图表自动编码器
Semi-Supervised Manifold Learning with Complexity Decoupled Chart Autoencoders
论文作者
论文摘要
自动编码是表示学习的一种流行方法。常规的自动编码器采用对称编码编码程序和简单的欧几里得潜在空间,以无监督的方式检测隐藏的低维结构。一些新型数据生成的现代方法,例如生成的对抗网络歪斜了这种对称性,但仍然采用了一对庞大的网络 - 一种生成图像,另一个可以根据从训练集中学到的先知来判断图像质量。这项工作介绍了一个图表自动编码器,其中具有不对称的编码编码过程,该过程可以包含其他半监督信息,例如类标签。除了增强使用复杂的拓扑结构和几何结构处理数据的能力外,所提出的模型还可以成功区分附近的数据,但仅与少量监督相交并与歧管相交。此外,该模型仅需要一个低复杂性编码操作,例如本地定义的线性投影。我们讨论了此类网络的近似能力,并得出了一个结合的结合,该结合基本上取决于数据歧管的内在维度,而不是环境空间的维度。接下来,我们将训练数据的采样率纳入界限,以忠实地表示给定的数据歧管。我们提出了数值实验,以证明所提出的模型可以有效地管理附近的多级别的数据,但具有不同类别,重叠的歧管和具有非平凡拓扑的歧管的分离。最后,我们在计算机视觉和分子动力学问题上进行了一些实验,这些实验介绍了我们方法对现实世界数据的功效。
Autoencoding is a popular method in representation learning. Conventional autoencoders employ symmetric encoding-decoding procedures and a simple Euclidean latent space to detect hidden low-dimensional structures in an unsupervised way. Some modern approaches to novel data generation such as generative adversarial networks askew this symmetry, but still employ a pair of massive networks--one to generate the image and another to judge the images quality based on priors learned from a training set. This work introduces a chart autoencoder with an asymmetric encoding-decoding process that can incorporate additional semi-supervised information such as class labels. Besides enhancing the capability for handling data with complicated topological and geometric structures, the proposed model can successfully differentiate nearby but disjoint manifolds and intersecting manifolds with only a small amount of supervision. Moreover, this model only requires a low-complexity encoding operation, such as a locally defined linear projection. We discuss the approximation power of such networks and derive a bound that essentially depends on the intrinsic dimension of the data manifold rather than the dimension of ambient space. Next we incorporate bounds for the sampling rate of training data need to faithfully represent a given data manifold. We present numerical experiments that verify that the proposed model can effectively manage data with multi-class nearby but disjoint manifolds of different classes, overlapping manifolds, and manifolds with non-trivial topology. Finally, we conclude with some experiments on computer vision and molecular dynamics problems which showcase the efficacy of our methods on real-world data.