论文标题

具有有限范围电势的二维模型中的零温度混乱

Zero-Temperature Chaos in Bidimensional Models with Finite-Range Potentials

论文作者

Barbieri, Sebastián, Bissacot, Rodrigo, Vedove, Gregório Dalle, Thieullen, Philippe

论文摘要

我们在有限的字母上构建了有限范围的电位,该字母表现出零温度混沌行为,如Van Enter和Ruszel所引入的。这是存在一系列温度的现象,这些温度会收敛到零,为此,整个在这些给定温度下的平衡度量集在两组基础状态之间振荡。 Brémont的工作表明,在有限字母的Dimension One中,不存在非缔合现象。霉菌菌为同一事实获得了不同的证据。 Chazottes和Hochman提供了第一个在更高尺寸的非缔合$ d \ geq3 $的例子;我们将其结果扩展为$ d = 2 $,并突出了两个递归性质估计的重要性,这些递归性质对此证明至关重要:扩展的相对复杂性和重建功能。 我们注意到,Chazottes和Shinoda在本文最初提交的同时发现了这一结果的不同证明,并且Gayral,Sablik和Taati已经发现了强有力的概括。

We construct a finite-range potential on a bidimensional full shift on a finite alphabet that exhibits a zero-temperature chaotic behavior as introduced by van Enter and Ruszel. This is the phenomenon where there exists a sequence of temperatures that converges to zero for which the whole set of equilibrium measures at these given temperatures oscillates between two sets of ground states. Brémont's work shows that the phenomenon of non-convergence does not exist for finite-range potentials in dimension one for finite alphabets; Leplaideur obtained a different proof for the same fact. Chazottes and Hochman provided the first example of non-convergence in higher dimensions $d\geq3$; we extend their result for $d=2$ and highlight the importance of two estimates of recursive nature that are crucial for this proof: the relative complexity and the reconstruction function of an extension. We note that a different proof of this result was found by Chazottes and Shinoda, at around the same time that this article was initially submitted and that a strong generalization has been found by Gayral, Sablik and Taati.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源