论文标题

飞机上的Mizohata-Takeuchi估计

Mizohata-Takeuchi estimates in the plane

论文作者

Shayya, Bassam

论文摘要

假设$ s $是$ \ bbb r^n $中的平滑紧凑型超表面,而$σ$是$ s $的适当度量。如果$ ef = \ hat {fdσ} $是与$(s,σ)$关联的扩展运算符,则Mizohata-takeuchi猜想断言$ \ \ int | ef(x)|^2 w(x)|^2 w(x)dx \ leq c(\ sup_t w(t)\ sup_t w(t)\ | f \ | _ {l^2(σ)}^2 $ for l^2(σ)$ in l^2(σ)$和权重$ w:\ bbb r^n \至[0,\ infty)$,其中$ \ sup $在$ \ bb r r^n $ of Cross-n $ in of Cross-n $ in of Cross-n $ in Int $ f in Int $ t $ f in the [0,\ infty)$( DX $。本文研究了如果我们只考虑$ \hatσ$的衰减属性,我们可以在$ \ bbb r^2 $中证明Mizohata-Takeuchi的猜想在多远。由于我们的结果,我们获得了一类凸曲线的新估计,其中包括指数平坦的曲线,例如$(t,e^{ - 1/t^m})$,$ 0 \ leq t \ leq t \ leq c_m $,$ m \ in \ bbb n $。

Suppose $S$ is a smooth compact hypersurface in $\Bbb R^n$ and $σ$ is an appropriate measure on $S$. If $Ef= \hat{fdσ}$ is the extension operator associated with $(S,σ)$, then the Mizohata-Takeuchi conjecture asserts that $\int |Ef(x)|^2 w(x) dx \leq C (\sup_T w(T)) \| f \|_{L^2(σ)}^2$ for all functions $f \in L^2(σ)$ and weights $w : \Bbb R^n \to [0,\infty)$, where the $\sup$ is taken over all tubes $T$ in $\Bbb R^n$ of cross-section 1, and $w(T)= \int_T w(x) dx$. This paper investigates how far we can go in proving the Mizohata-Takeuchi conjecture in $\Bbb R^2$ if we only take the decay properties of $\hatσ$ into consideration. As a consequence of our results, we obtain new estimates for a class of convex curves that include exponentially flat ones such as $(t,e^{-1/t^m})$, $0 \leq t \leq c_m$, $m \in \Bbb N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源