论文标题
用集成的RF屏蔽材料评估半金石石器时代的闪烁体,以更高的宠物/MRI系统整合
Evaluation of semi-monolithic scintillators with integrated RF shielding material for a higher integration of PET/MRI systems
论文作者
论文摘要
将PET整合到MRI中以形成混合系统,需要对两个子系统进行妥协。例如,集成可能是以降低的宠物探测器高度或MRI检查量直径降低的代价。在这里,我们提出了一个所谓的共享体积概念,以更有效地使用两个子系统所需的音量,其中闪烁体的MR透明度通过将RF屏蔽层集成到宠物探测器的闪烁体中来利用闪烁体的MR透明度。分别研究了分别研究每个其他平板之间的7 mm和12毫米高度的半石器时代闪烁体的原型(PVC平板),并分别在每个其他平板之间进行整合的铜箔,以评估屏蔽有效性(SE)。用测试工作台系统上的探针测量SE。此外,通过在三个lyso闪烁体配置中使用数字SIPM阵列(DPC3200,PDPC)确定使用梯度树的提升,能量和计时分辨率来评估宠物探测器的性能:ESR分离:slab $ \ m mathrm {_ mathrm {_ {_ {esr}} $) (平板$ \ mathrm {_ {eSr+cu}} $)和纯粹的铜箔分离(slab $ \ mathrm {_ {cu}} $)。在每个平板和12毫米高度之间具有屏蔽的原型显示最高的SE,结合了31 dB(平均)与支撑框架。虽然平板$ \ mathrm {_ {cu}} $最适合定位,然后是平板$ \ mathrm {_ {eSr}} $和slab $ \ mathrm {_ {_ {esr+cu}} $,slab $ \ m m istrm {esr resrm {eSr {平板$ \ mathrm {_ {eSr+cu}} $(11.2%)和平板$ \ mathrm {_ {cu}} $(12.6%)。对于定时分辨率,平板$ \ mathrm {_ {esr}} $和平板$ \ mathrm {_ {cu}} $分别达到了279 PS和288 PS。平板$ \ mathrm {_ {esr+cu}} $执行最差(293 ps)。基于闪烁的RF屏蔽表现出具有类似宠物性能的良好RF屏蔽,这表明了将宠物探测器更有效地整合到MRI系统中的潜力。
The integration of PET into MRI to form a hybrid system requires often compromises for both subsystems. For example, the integration might come at the cost of a reduced PET detector height or a reduced MRI examination volume diameter. Here, we propose a so-called shared-volume concept to use the volume required for both subsystems more efficiently, in which the MR transparency of the scintillator is exploited by integrating the RF shielding into the scintillator of the PET detector. Semi-monolithic scintillator prototypes (PVC slabs) of 7 mm and 12 mm height with integrated copper foil between every and every other slab, respectively, were investigated to evaluate the shielding effectiveness (SE). The SE was measured with probes on a test bench system. In addition, the PET detector performance was evaluated by determining the positioning using gradient tree boosting, energy and timing resolution using digital SiPM arrays (DPC3200, PDPC) in three LYSO scintillator configurations: ESR separation (Slab$\mathrm{_{ESR}}$), ESR with copper foil in between (Slab$\mathrm{_{ESR+Cu}}$), and purely copper foil separation (Slab$\mathrm{_{Cu}}$). The prototype with shielding between each slab and 12 mm height showed the highest SE with 31 dB (mean) in combination with a supporting frame. While Slab$\mathrm{_{Cu}}$ was best for positioning, followed by Slab$\mathrm{_{ESR}}$ and Slab$\mathrm{_{ESR+Cu}}$, the Slab$\mathrm{_{ESR}}$ had the best energy resolution (10.6 %), followed by Slab$\mathrm{_{ESR+Cu}}$ (11.2 %) and Slab$\mathrm{_{Cu}}$ (12.6 %). For the timing resolution, Slab$\mathrm{_{ESR}}$ and Slab$\mathrm{_{Cu}}$ achieved 279 ps and 288 ps, respectively. Slab$\mathrm{_{ESR+Cu}}$ performed worst (293 ps). The scintillator-based RF shielding shows good RF shielding with similar PET performance, demonstrating the potential for more effective integration of PET detectors into MRI systems.