论文标题
组成运营商和广义素数
Composition operators and generalized primes
论文作者
论文摘要
我们在Hardy Space $ \ Mathcal {H}^2 $ dirichlet系列的构图运算符上使用Square总结系数。我们的主要结果是,就nevanlinna型计数函数而言,要在$ \ Mathcal {h}^2 $上紧凑的一类组成运算符。为此,我们将概念扩展到了一个宽敞的空间$ \ MATHCAL {H}_λ^2 $的广义dirichlet系列,以一系列Beurling的素数自然诱导。
We study composition operators on the Hardy space $\mathcal{H}^2$ of Dirichlet series with square summable coefficients. Our main result is a necessary condition, in terms of a Nevanlinna-type counting function, for a certain class of composition operators to be compact on $\mathcal{H}^2$. To do that we extend our notions to a Hardy space $\mathcal{H}_Λ^2$ of generalized Dirichlet series, induced in a natural way by a sequence of Beurling's primes.