论文标题

矩形可见度图的面积,周长,高度和宽度

Area, Perimeter, Height, and Width of Rectangle Visibility Graphs

论文作者

Caughman, John S., Dunn, Charles L., Laison, Joshua D., Neudauer, Nancy Ann, Starr, Colin L.

论文摘要

矩形可见度图(RVG)是通过向每个顶点分配水平和垂直侧面的每个顶点的一个矩形,以使图中的边缘对应于相应的矩形之间的视线和垂直线。为了离散,我们仅考虑其角落具有整数坐标的矩形。对于任何给定的RVG,我们寻求一个用面积,周长,宽度或高度测量的最小边界框的表示形式(假定高度不超过宽度)。 我们得出有关这些参数的许多结果。使用这些结果,我们表明,这四个度量是不同的,从某种意义上说,存在图$ g_1 $和$ g_2 $,带有$ abreation(g_1)<区域(g_2)$,但$ perimeter(g_2)<perimeter(g_1)$,而对于这些参数的所有其他成对,则类似。我们进一步表明,存在一个图$ g_3 $,带有表示$ s_1 $和$ s_2 $,因此$ afore(g_3)=区域(s_1)<区域(s_2)$,但$ curmeter(g_3)= courimeter(s_2)<yemeter(s_1)$。换句话说,$ g_3 $需要不同的表示,以最大程度地减少面积和周长。同样,存在这样的图来证明这些参数所有其他对的独立性。 在具有$ n \ leq 6 $顶点的图表中,空图$ e_n $需要最大的区域。但是,对于$ n = 7 $和$ n = 8 $顶点的图表,我们表明完整的图$ k_7 $和$ k_8 $分别需要大于$ e_7 $和$ e_8 $的面积。使用此情况,我们表明,对于所有$ n \ geq 8 $,空图$ e_n $在$ n $顶点的所有RVG中的高度,宽度,区域或周边都不是最大的。

A rectangle visibility graph (RVG) is represented by assigning to each vertex a rectangle in the plane with horizontal and vertical sides in such a way that edges in the graph correspond to unobstructed horizontal and vertical lines of sight between their corresponding rectangles. To discretize, we consider only rectangles whose corners have integer coordinates. For any given RVG, we seek a representation with smallest bounding box as measured by its area, perimeter, width, or height (height is assumed not to exceed width). We derive a number of results regarding these parameters. Using these results, we show that these four measures are distinct, in the sense that there exist graphs $G_1$ and $G_2$ with $area(G_1)<area(G_2)$ but $perimeter(G_2)<perimeter(G_1)$, and analogously for all other pairs of these parameters. We further show that there exists a graph $G_3$ with representations $S_1$ and $S_2$ such that $area(G_3)=area(S_1)<area(S_2)$ but $perimeter(G_3)=perimeter(S_2)<perimeter(S_1)$. In other words, $G_3$ requires distinct representations to minimize area and perimeter. Similarly, such graphs exist to demonstrate the independence of all other pairs of these parameters. Among graphs with $n \leq 6$ vertices, the empty graph $E_n$ requires largest area. But for graphs with $n=7$ and $n=8$ vertices, we show that the complete graphs $K_7$ and $K_8$ require larger area than $E_7$ and $E_8$, respectively. Using this, we show that for all $n \geq 8$, the empty graph $E_n$ does not have largest height, width, area, or perimeter among all RVGs on $n$ vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源