论文标题
双曲线填充物的分类
Classification of hyperbolic Dehn fillings I
论文作者
论文摘要
令$ m $为$ 2 $ cused双曲线$ 3 $ - manifold。根据Thurston的工作,每个Dehn填充$ M $的核心大地填充的衍生物的产物是它的不变。在本文中,我们使用此不变性将$ M $的Dehn填充物与足够大的系数分类。此外,对于任何给定的两个$ M $的Dehn填充物(具有足够大的系数),如果它们上述不变性相同,则显示其复杂量也相同。
Let $M$ be a $2$-cusped hyperbolic $3$-manifold. By the work of Thurston, the product of the derivatives of the holonomies of core geodesics of each Dehn filling of $M$ is an invariant of it. In this paper, we classify Dehn fillings of $M$ with sufficiently large coefficients using this invariant. Further, for any given two Dehn fillings of $M$ (with sufficiently larger coefficients), if their aforementioned invariants are the same, it is shown their complex volumes are the same as well.