论文标题
重新访问半监督语义细分中的弱到弱的一致性
Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation
论文作者
论文摘要
在这项工作中,我们重新访问了弱到较强的一致性框架,该框架由半监视分类的FixMatch推广,在该分类中,预测弱扰动的图像可以作为其强烈扰动版本的监督。有趣的是,我们观察到,这种简单的管道已经转移到我们的分割场景时已经在最近的高级工作中取得了竞争成果。但是,它的成功在很大程度上取决于强大数据增强的手动设计,但是,这可能是有限的,并且不足以探索更广泛的扰动空间。在此激励的情况下,我们提出了一个辅助特征扰动流作为补充,导致了扩大的扰动空间。另一方面,为了充分探测原始图像级的增强,我们提出了一种双流扰动技术,从而使两个强大的观点能够同时受到共同的弱视图的指导。因此,在Pascal,CityScapes和Coco基准测试的所有评估方案中,我们整体统一的双流扰动方法(UNIMATCH)都显着超过所有现有方法。遥感解释和医学图像分析也证明了它的优势。我们希望我们复制的FixMatch,我们的结果可以激发更多未来的作品。代码和日志可在https://github.com/liheyoung/unimatch上找到。
In this work, we revisit the weak-to-strong consistency framework, popularized by FixMatch from semi-supervised classification, where the prediction of a weakly perturbed image serves as supervision for its strongly perturbed version. Intriguingly, we observe that such a simple pipeline already achieves competitive results against recent advanced works, when transferred to our segmentation scenario. Its success heavily relies on the manual design of strong data augmentations, however, which may be limited and inadequate to explore a broader perturbation space. Motivated by this, we propose an auxiliary feature perturbation stream as a supplement, leading to an expanded perturbation space. On the other, to sufficiently probe original image-level augmentations, we present a dual-stream perturbation technique, enabling two strong views to be simultaneously guided by a common weak view. Consequently, our overall Unified Dual-Stream Perturbations approach (UniMatch) surpasses all existing methods significantly across all evaluation protocols on the Pascal, Cityscapes, and COCO benchmarks. Its superiority is also demonstrated in remote sensing interpretation and medical image analysis. We hope our reproduced FixMatch and our results can inspire more future works. Code and logs are available at https://github.com/LiheYoung/UniMatch.