论文标题
在Drinfeld模块化形式上,高级VI的模块化形式:与系数形式相关的简单复合物
On Drinfeld modular forms of higher rank VI: The simplicial complex associated with a coefficient form
论文作者
论文摘要
系数形式\({} _ {a} \ ell_ {k} \)和para-eisenstein系列\(α_{k} \)是简单的Drinfeld模块化形式。我们研究所附的简单复合物\(\ Mathcal {bt}^{r}({} _ {a} _ {a} \ ell_ {k})\)和\(\ Mathcal {bt}^r} \(\ Mathcal {bt}^{r} \)它们已连接(如果等级\(r \)大于2),则在\(\ Mathcal {bt}^{r} \)中对编码1的均等1,无边界,并满足对称属性,在dynkin diagram的非实用性下的对称性属性。
The coefficient forms \( {}_{a} \ell_{k} \) and the para-Eisenstein series \(α_{k}\) are simplicial Drinfeld modular forms. We study the attached simplicial complexes \(\mathcal{BT}^{r}( {}_{a} \ell_{k})\) and \(\mathcal{BT}^{r}(α_{k})\), which are full subcomplexes of the Bruhat-Tits building \(\mathcal{BT}^{r}\) of \( \mathrm{PGL}(r, K_{\infty})\). They are connected (if the rank \(r\) is larger than 2), strongly equidimensional of codimension 1 in \(\mathcal{BT}^{r}\), boundaryless, and satisfy a symmetry property under the non-trivial involution of the Dynkin diagram \(A_{r-1}\).