论文标题

基于比较的对话推荐系统与相对匪徒反馈

Comparison-based Conversational Recommender System with Relative Bandit Feedback

论文作者

Xie, Zhihui, Yu, Tong, Zhao, Canzhe, Li, Shuai

论文摘要

随着对话建议的最新进展,推荐系统能够通过对话互动积极而动态地引起用户偏好。为了实现这一目标,该系统会定期查询用户对属性的偏好并收集其反馈。但是,大多数现有的对话推荐系统仅使用户能够提供对属性的绝对反馈。实际上,绝对反馈通常受到限制,因为用户在表达偏好时倾向于提供有偏见的反馈。取而代之的是,由于用户偏好是固有的相对,因此用户通常更倾向于表达比较偏好。为了使用户能够在对话互动期间提供比较偏好,我们提出了一种基于比较的对话推荐系统。相对反馈虽然更实用,但并不容易被合并,因为其反馈量表总是与用户的绝对偏好不匹配。通过有效地收集和了解交互方式的相对反馈,我们进一步提出了一种新的Bandit算法,我们称之为RelativeConucb。与对话式推荐系统中的现有Bandit算法相比,合成和现实数据集的实验验证了我们提出的方法的优势。

With the recent advances of conversational recommendations, the recommender system is able to actively and dynamically elicit user preference via conversational interactions. To achieve this, the system periodically queries users' preference on attributes and collects their feedback. However, most existing conversational recommender systems only enable the user to provide absolute feedback to the attributes. In practice, the absolute feedback is usually limited, as the users tend to provide biased feedback when expressing the preference. Instead, the user is often more inclined to express comparative preferences, since user preferences are inherently relative. To enable users to provide comparative preferences during conversational interactions, we propose a novel comparison-based conversational recommender system. The relative feedback, though more practical, is not easy to be incorporated since its feedback scale is always mismatched with users' absolute preferences. With effectively collecting and understanding the relative feedback from an interactive manner, we further propose a new bandit algorithm, which we call RelativeConUCB. The experiments on both synthetic and real-world datasets validate the advantage of our proposed method, compared to the existing bandit algorithms in the conversational recommender systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源