论文标题

数值和仿射半群的准多项式生长有限制的间隙

Quasi-polynomial growth of numerical and affine semigroups with constrained gaps

论文作者

DiPasquale, Michael, Gillespie, Bryan R., Peterson, Chris

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A common tool in the theory of numerical semigroups is to interpret a desired class of semigroups as the integer lattice points in a rational polyhedron in order to leverage computational and enumerative techniques from polyhedral geometry. Most arguments of this type make use of a parametrization of numerical semigroups with fixed multiplicity $m$ in terms of their $m$-Apéry sets, giving a representation called Kunz coordinates which obey a collection of inequalities defining the Kunz polyhedron. In this work, we introduce a new class of polyhedra describing numerical semigroups in terms of a truncated addition table of their sporadic elements. Applying a classical theorem of Ehrhart to slices of these polyhedra, we prove that the number of numerical semigroups with $n$ sporadic elements and Frobenius number $f$ is polynomial up to periodicity, or quasi-polynomial, as a function of $f$ for fixed $n$. We also generalize this approach to higher dimensions to demonstrate quasi-polynomial growth of the number of affine semigroups with a fixed number of elements, and all gaps, contained in an integer dilation of a fixed polytope.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源