论文标题

二元物质方程式,确切的点源解决方案以及广义出生的黑洞 - 菲尔德理论

Dyonic Matter Equations, Exact Point-Source Solutions, and Charged Black Holes in Generalized Born--Infeld Theory

论文作者

Yang, Yisong

论文摘要

我们得出了控制静态敌对物质的运动方程,该方程是用两个真实的标量场描述的,在出生的非线性电动力学中 - 菲尔德理论类型。然后,我们在受二合一点芯源的二次和对数非线性案例中获得这些方程的精确有限能量解,并构建具有降级的曲率奇异性的染色型黑洞。在这项工作的核心模型的二次非线性的情况下,我们表明,敌对的溶液使我们能够恢复电磁对称性,该对称性被排除在非二元的情况下被排除在非单调的情况下。我们进一步证明,在K史密斯宇宙学的背景下,非线性电动力学模型具有其独特的特征,鉴于其所代表的宇宙流体状态的基本方程。在这种情况下,证明了二次和对数模型可以解决原始诞生的 - infeld模型k- essence Action函数以及其所有分数驱动的扩展。此外,已经表明,在所有多项式模型和其他所考虑的其他示例中,二次模型在早期宇宙中产生以辐射为主的时代具有独特的位置。

We derive the equations of motion governing static dyonic matters, described in terms of two real scalar fields, in nonlinear electrodynamics of the Born--Infeld theory type. We then obtain exact finite-energy solutions of these equations in the quadratic and logarithmic nonlinearity cases subject to dyonic point-charge sources and construct dyonically charged black holes with relegated curvature singularities. In the case of quadratic nonlinearity, which is the core model of this work, we show that dyonic solutions enable us to restore electromagnetic symmetry, which is known to be broken in non-dyonic situations by exclusion of monopoles. We further demonstrate that in the context of k-essence cosmology the nonlinear electrodynamics models possess their own distinctive signatures in light of the underlying equations of state of the cosmic fluids they represent. In this context, the quadratic and logarithmic models are shown to resolve a density-pressure inconsistency issue exhibited by the original Born--Infeld model k-essence action function as well as by all of its fractional-powered extensions. Moreover, it is shown that the quadratic model is uniquely positioned to give rise to a radiation-dominated era in the early universe among all the polynomial models and other examples considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源