论文标题
谐波振荡器,其梯子操作员和连贯状态的等效非理性扩展
Equivalent non-rational extensions of the harmonic oscillator, their ladder operators and coherent states
论文作者
论文摘要
在这项工作中,我们产生一个量子电位家族,这些量子是谐波振荡器的非理性扩展。可以通过两个不同但同等的超对称转换获得这样的家族。我们为这些扩展构建梯子操作员,作为两种转换的交织运算符的乘积。然后,我们产生了Barut-Girardello相干状态的家族,并将其某些特性分析为时间稳定性,标签上的连续性和完整关系。此外,我们计算均值能量值,时间依赖性概率密度,Wigner函数和曼德尔Q参数来揭示这些状态的一般非经典行为。
In this work, we generate a family of quantum potentials that are non-rational extensions of the harmonic oscillator. Such a family can be obtained via two different but equivalent supersymmetric transformations. We construct ladder operators for these extensions as the product of the intertwining operators of both transformations. Then, we generate families of Barut-Girardello coherent states and analyze some of their properties as temporal stability, continuity on the label, and completeness relation. Moreover, we calculate mean-energy values, time-dependent probability densities, Wigner functions, and the Mandel Q-parameter to uncover a general non-classical behavior of these states.