论文标题
在kummer扩展上,无穷大的位置
On Kummer extensions with one place at infinity
论文作者
论文摘要
令$ k $为$ \ mathbb {f} _ {q} $的代数关闭。我们在曲线$ \ Mathcal $ \ Mathcal {x} $的唯一位置提供了weierstrass semigroup $ h(q_ \ infty)$的明确说明\ text {deg} f)= 1 $。结果,在某些情况下,我们确定$ h(q _ {\ infty})$的frobenius编号和多重性,并且我们讨论了WeierStrass Semigroup $ h(q _ {\ infty})$的足够条件,以使其对称。最后,我们表征了类型$(\ Mathcal {x},q _ {\ infty})$的某些最大城堡曲线。
Let $K$ be the algebraic closure of $\mathbb{F}_{q}$. We provide an explicit description of the Weierstrass semigroup $H(Q_\infty)$ at the only place at infinity $Q_{\infty}$ of the curve $\mathcal{X}$ defined by the Kummer extension with equation $y^m=f(x)$, where $f(x)\in K[x]$ is a polynomial satisfying $\gcd (m, \text{deg} f)=1$. As a consequence, we determine the Frobenius number and the multiplicity of $H(Q_{\infty})$ in some cases, and we discuss sufficient conditions for the Weierstrass semigroup $H(Q_{\infty})$ to be symmetric. Finally, we characterize certain maximal Castle curves of type $(\mathcal{X}, Q_{\infty})$.