论文标题
二维材料中的固有弯曲柔性常数
Intrinsic bending flexoelectric constants in two-dimensional materials
论文作者
论文摘要
挠性电解性是一种机电耦合的一种形式,最近出现了,因为与压电性不同,在任何介电材料中,它在理论上都是可能的。二维(2D)材料也引起了人们的重大兴趣,因为它们具有异常的机电特性和高灵活性,但是这些材料的固有挠性特性仍未解决。在这项工作中,使用原子建模来说明电荷 - 偶极相互作用,我们报告了一系列二维材料的固有挠性固有常数,包括石墨烯同种异体异素体,硝酸盐,组IV元素的石墨烯类似物以及过渡金属二核苷酸化金属元素(TMDCS)。我们通过提出的机械弯曲方案来实现这一目标,该方案消除了对总极化的压电贡献,从而使我们能够直接测量挠性恒定常数。尽管由于弱$π-σ$相互作用,诸如石墨烯之类的扁平2D材料具有较低的挠性常数,但发现屈曲会增加单层IV元素中的挠性常数。最后,由于弯曲引起的结构不对称,由于电荷转移显着增强,因此发现TMDC具有最大的挠性常数,包括MOS $ _ {2} $,其柔韧性常数比石墨烯大十倍。
Flexoelectricity is a form of electromechanical coupling that has recently emerged because, unlike piezoelectricity, it is theoretically possible in any dielectric material. Two-dimensional (2D) materials have also garnered significant interest because of their unusual electromechanical properties and high flexibility, but the intrinsic flexoelectric properties of these materials remain unresolved. In this work, using atomistic modeling accounting for charge-dipole interactions, we report the intrinsic flexoelectric constants for a range of two-dimensional materials, including graphene allotropes, nitrides, graphene analogs of group-IV elements, and the transition metal dichalcogenides (TMDCs). We accomplish this through a proposed mechanical bending scheme that eliminates the piezoelectric contribution to the total polarization, which enables us to directly measure the flexoelectric constants. While flat 2D materials like graphene have low flexoelectric constants due to weak $π-σ$ interactions, buckling is found to increase the flexoelectric constants in monolayer group-IV elements. Finally, due to significantly enhanced charge transfer coupled with structural asymmetry due to bending, the TMDCs are found to have the largest flexoelectric constants, including MoS$_{2}$ having a flexoelectric constant ten times larger than graphene.