论文标题

一些可解释的聚类问题的计算复杂性

The computational complexity of some explainable clustering problems

论文作者

Laber, Eduardo Sany

论文摘要

我们研究了[Dasgupta等,ICML 2020]提出的框架中一些可解释的聚类问题的计算复杂性,其中通过轴对准决策树实现了解释性。我们考虑$ k $ -MEANS,$ K $ -MEDIANS,$ K $ - 中心和间距成本功能。我们证明,前三个很难优化,而后者可以在多项式时间进行优化。

We study the computational complexity of some explainable clustering problems in the framework proposed by [Dasgupta et al., ICML 2020], where explainability is achieved via axis-aligned decision trees. We consider the $k$-means, $k$-medians, $k$-centers and the spacing cost functions. We prove that the first three are hard to optimize while the latter can be optimized in polynomial time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源