论文标题
PrepNet:卷积自动编码器,用于均化CT扫描以进行跨数据库医学图像分析
PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for Cross-Dataset Medical Image Analysis
论文作者
论文摘要
随着Covid-19在世界范围内的传播,需要快速,精确的自动分诊机制,以减少人类的努力,例如用于基于图像的诊断。尽管文献在这个方向上表现出了有希望的努力,但报告的结果并未考虑在不同情况下获得的CT扫描的可变性,因此,渲染模型不适合用于使用例如使用例如使用的数据。不同的扫描仪技术。虽然现在可以使用PCR测试有效地进行COVID-19诊断,但该用例说明了一种方法来克服数据可变性问题以使医疗图像分析模型更广泛地适用。在本文中,我们使用COVID-19诊断的示例明确解决了可变性问题,并提出了一种新颖的生成方法,旨在消除例如成像技术同时通过利用深度自动编码器的概念来对CT扫描进行最小的变化。拟议的预性架构(PrepNet)(i)在多个CT扫描数据集上共同训练,(ii)能够提取改进的判别特征,以改善诊断。三个公共数据集(SARS-COVID-2,UCSD COVID-CT,MOSMED)的实验结果表明,我们的模型将跨数据集的概括提高了高达$ 11.84 $的百分比,尽管数据集绩效中的情况略有下降。
With the spread of COVID-19 over the world, the need arose for fast and precise automatic triage mechanisms to decelerate the spread of the disease by reducing human efforts e.g. for image-based diagnosis. Although the literature has shown promising efforts in this direction, reported results do not consider the variability of CT scans acquired under varying circumstances, thus rendering resulting models unfit for use on data acquired using e.g. different scanner technologies. While COVID-19 diagnosis can now be done efficiently using PCR tests, this use case exemplifies the need for a methodology to overcome data variability issues in order to make medical image analysis models more widely applicable. In this paper, we explicitly address the variability issue using the example of COVID-19 diagnosis and propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans through leveraging the idea of deep auto-encoders. The proposed prepossessing architecture (PrepNet) (i) is jointly trained on multiple CT scan datasets and (ii) is capable of extracting improved discriminative features for improved diagnosis. Experimental results on three public datasets (SARS-COVID-2, UCSD COVID-CT, MosMed) show that our model improves cross-dataset generalization by up to $11.84$ percentage points despite a minor drop in within dataset performance.