论文标题

数值轨迹优化的二次积分惩罚方法

Quadratic Integral Penalty Methods for Numerical Trajectory Optimization

论文作者

Neuenhofen, Martin Peter

论文摘要

本文为数学问题类别的数值解决方案提供了新的数学算法,称为\ emph {动态优化问题}。这些是数学优化问题,即寻求数字最小化表达式的问题,以遵守平等和不平等约束。动态优化问题与非动态问题不同,因为寻求的数字可能在一个自变量上有所不同。可以将此自变量视为,例如时间。 本文提出了三种方法,重点是算法,收敛分析和计算示范。第一种方法是基于积分二次惩罚项的直接转录方法。该方法的目的是避免在直接搭配方法中可能出现的数值伪像,例如铃声或错误/虚假的解决方案。第二种方法是修改后的增强拉格朗日方法,该方法利用增强拉格朗日方法的想法来解决具有大型二次惩罚项的优化问题,例如从先前的直接转录方法引起的。最后,我们提出了一种直接的转录方法,该方法具有整体二次惩罚和整体对数障碍。所有方法都以应用和示例进行动机,并通过完整的证据证明其收敛性,并通过数值实验进行了验证。

This thesis presents new mathematical algorithms for the numerical solution of a mathematical problem class called \emph{dynamic optimization problems}. These are mathematical optimization problems, i.e., problems in which numbers are sought that minimize an expression subject to obeying equality and inequality constraints. Dynamic optimization problems are distinct from non-dynamic problems in that the sought numbers may vary over one independent variable. This independent variable can be thought of as, e.g., time. This thesis presents three methods, with emphasis on algorithms, convergence analysis, and computational demonstrations. The first method is a direct transcription method that is based on an integral quadratic penalty term. The purpose of this method is to avoid numerical artifacts such as ringing or erroneous/spurious solutions that may arise in direct collocation methods. The second method is a modified augmented Lagrangian method that leverages ideas from augmented Lagrangian methods for the solution of optimization problems with large quadratic penalty terms, such as they arise from the prior direct transcription method. Lastly, we present a direct transcription method with integral quadratic penalties and integral logarithmic barriers. All methods are motivated with applications and examples, analyzed with complete proofs for their convergence, and practically verified with numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源