论文标题
金原子接触的语音热电导:连贯与不连贯的运输
Phononic heat conductance of gold atomic contacts: Coherent versus incoherent transport
论文作者
论文摘要
我们在这里提出了一种理论方法,可以确定对纳米级系统在相位状态下的导热率的贡献。我们的方法利用经典的分子动力学(MD)模拟来计算温度依赖性动力学矩阵,随后在Landauer-Büttiker形式上计算了语音热电导,并借助非平衡绿色功能技术。针对纳米结构量身定制,力量常数和热传输计算的关键步骤直接在实际空间中执行。与常规密度功能理论(DFT)方法相比,我们方法的优点是两个倍。首先,可以使用选择方法来描述原子间相互作用。半经验潜力可能会导致较大的计算加速,从而可以研究更大的系统。其次,该方法自然考虑了原子力常数的温度依赖性,该方面在典型的基于静态DFT的计算中被忽略。我们通过分析金(AU)链的音调热电导的温度依赖性,长度为1到12个原子,来说明我们的方法。此外,为了评估这些原子尺度电线中非谐效应的重要性,我们将相位连接方法与非平衡MD(NEMD)模拟进行比较。我们发现,对于所有研究的链长,相位交联方法和经典NEMD方法的预测在很大程度上是一致的,这表明热传输是连贯的,并且我们的相位互联方法非常适合此类纳米结构。
We present here a theoretical method to determine the phononic contribution to the thermal conductance of nanoscale systems in the phase-coherent regime. Our approach makes use of classical molecular dynamics (MD) simulations to calculate the temperature-dependent dynamical matrix, and the phononic heat conductance is subsequently computed within the Landauer-Büttiker formalism with the help of nonequilibrium Green's function techniques. Tailored to nanostructures, crucial steps of force constant and heat transport calculations are performed directly in real space. As compared to conventional density functional theory (DFT) approaches, the advantage of our method is two-fold. First, interatomic interactions can be described with the method of choice. Semiempirical potentials may lead to large computational speedups, enabling the study of much larger systems. Second, the method naturally takes into account the temperature dependence of atomic force constants, an aspect that is ignored in typical static DFT-based calculations. We illustrate our method by analyzing the temperature dependence of the phononic thermal conductance of gold (Au) chains with lengths ranging from 1 to 12 atoms. Moreover, in order to evaluate the importance of anharmonic effects in these atomic-scale wires, we compare the phase-coherent approach with nonequilibrium MD (NEMD) simulations. We find that the predictions of the phase-coherent method and the classical NEMD approach largely agree above the Debye temperature for all studied chain lengths, which shows that heat transport is coherent and that our phase-coherent approach is well suited for such nanostructures.