论文标题
DPMP深度概率运动计划:草莓拾取机器人中的用例
dPMP-Deep Probabilistic Motion Planning: A use case in Strawberry Picking Robot
论文作者
论文摘要
本文提出了一种从示范中学习的新型概率方法(LFD)。深度运动原语(DMP)是确定性的LFD模型,可直接将视觉信息映射到机器人轨迹中。本文扩展了DMP,并提出了一个深层概率模型,该模型将视觉信息映射到有效的机器人轨迹的分布中。提出了导致轨迹精度最高水平的体系结构,并与现有方法进行了比较。此外,本文介绍了一种用于学习域特异性潜在特征的新型培训方法。我们展示了在实验室的草莓收集任务中提出的概率方法和新型潜在空间学习的优越性。实验结果表明,潜在太空学习可以显着改善模型预测性能。所提出的方法允许从分布中采样轨迹并优化机器人轨迹以满足次级目标,例如避免碰撞。
This paper presents a novel probabilistic approach to deep robot learning from demonstrations (LfD). Deep movement primitives (DMPs) are deterministic LfD model that maps visual information directly into a robot trajectory. This paper extends DMPs and presents a deep probabilistic model that maps the visual information into a distribution of effective robot trajectories. The architecture that leads to the highest level of trajectory accuracy is presented and compared with the existing methods. Moreover, this paper introduces a novel training method for learning domain-specific latent features. We show the superiority of the proposed probabilistic approach and novel latent space learning in the lab's real-robot task of strawberry harvesting. The experimental results demonstrate that latent space learning can significantly improve model prediction performances. The proposed approach allows to sample trajectories from distribution and optimises the robot trajectory to meet a secondary objective, e.g. collision avoidance.