论文标题
在$ f(r,t)$重力中不断发展的球形和双曲线虫洞的能量限制
Energy Constraints for Evolving Spherical and Hyperbolic Wormholes in $f(R,T)$ Gravity
论文作者
论文摘要
本文的主要目的是研究众所周知的$ f(r,t)重力理论中球形和双曲线虫洞的能量条件界限。为此,我们使用各向异性物质和通用函数的线性形式$ f(r,t)$制定球形和伪层的几何形式。通过对径向和切向压力施加不同的条件,或通过采用一些已知的红移和形状功能选择,我们介绍了球形和伪层对称性虫洞的能量条件的图形分析。可以看出,球形对称虫孔的能量密度总是以$λ>-4π$和$λ<-8π$为阳性,而径向压力的能量条件在喉咙时为负。同样,在伪层对称虫洞的情况下,可以观察到能量密度始终是负$λ$的,但是基于径向压的条件对于被认为不同的情况可能是正或负的。
The primary objective of this article is to study the energy condition bounds for spherical and hyperbolic wormholes in well-known $f(R,T)$ theory of gravity. For this purpose, we formulate the field equations for spherically and pseudospherically geometries using anisotropic matter and linear form of generic function $f(R,T)$. By imposing different conditions on radial and tangential pressures or by adopting some known choices for red shift and shape functions, we present the graphical analysis of energy conditions for both spherically and pseudospherically symmetric wormholes. It is seen that energy density for spherically symmetric wormhole is always positive for $λ>-4π$ and $λ<-8π$, while the energy conditions for radial pressure are negative at throat. Likewise, in case of pseudospherically symmetric wormhole, it is observed that energy density is always positive for negative $λ$, however conditions based on radial pressure may be positive or negative for the considered different cases.