论文标题

无监督的对阶段的解释性学习多数系统

Unsupervised Interpretable Learning of Phases From Many-Qubit Systems

论文作者

Sadoune, Nicolas, Giudici, Giuliano, Liu, Ke, Pollet, Lode

论文摘要

Qubit制造中的实验进展要求开发新的理论工具来分析量子数据。我们展示了如何使用无监督的机器学习技术来使用本地测量数据来理解短程纠缠的多位系统。该方法成功地构建了集群状态模型的相图,并检测其相相的相应阶段参数,包括字符串顺序参数。对于乘坐外部磁场的曲折代码,机器可以识别其两个稳定器的显式形式。不需要基础的哈密顿或量子状态的事先信息;相反,机器输出其特征性可观察物。我们的作品为混合算法的第一原理应用打开了大门,该算法的目的是在没有监督的情况下进行强大的解释性。

Experimental progress in qubit manufacturing calls for the development of new theoretical tools to analyze quantum data. We show how an unsupervised machine-learning technique can be used to understand short-range entangled many-qubit systems using data of local measurements. The method successfully constructs the phase diagram of a cluster-state model and detects the respective order parameters of its phases, including string order parameters. For the toric code subject to external magnetic fields, the machine identifies the explicit forms of its two stabilizers. Prior information of the underlying Hamiltonian or the quantum states is not needed; instead, the machine outputs their characteristic observables. Our work opens the door for a first-principles application of hybrid algorithms that aim at strong interpretability without supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源